
Disclaimer: The insights and analysis expressed in this paper are those of the authors and do not 
necessarily reflect the views, official policy, or position of Georgetown University and its 
stakeholders. 

 

 
 
 
 
 
 

Predicting Music Genre  

with Lyrics  

and Machine Learning Algorithms 
Github: https://github.com/georgetown-analytics/Music-Lyrics 

 
 
 
 

 
Georgetown University School of Continuing Studies 

Cohort 23 — Capstone Project 
 

Author: Tony Wright 
Project Coordinator: Tony Wright 

Capstone Advisor: Karen Belita 
 
 
 
 
 

June 26, 2021 — Capstone Project in Partial Fulfilment of the Requirements for the Certificate in 
Data Science. 

  

https://github.com/georgetown-analytics/Music-Lyrics


TABLE OF CONTENTS 

1 ABSTRACT ............................................................................................................................... 3 

2 HYPOTHESIS AND FRAMING ..................................................................................................... 3 

3 METHODOLOGY....................................................................................................................... 4 

4 CONCLUSION. ........................................................................................................................ 16 

5 NEXT STEPS. .......................................................................................................................... 16 
 
  



1 ABSTRACT 
1.1 Using algorithms to identify a product, a corresponding consumer, and uniting the two is the 

dominant use of advanced algorithms today (metric: ‘money generated from the activity’). 
Identifying attributes of a new song is a necessary first step in finding a consumer for that song. The 
most fundamental of song attributes is genre. Fortunately, consumers readily identify themselves 
publicly by their favorite genres making it a powerful Foreign Key to complete the sale. This 
capstone used machine learning and the song lyrics to identify a song’s musical genre.  

1.2 Data Science has several tools to convert language into consumable data for various algorithms. 
Natural Language Processing (NLP) adds several unique steps to the front of the data science 
process.  NLP strips away the pieces that help language make sense for people but add nothing to a 
machine’s understanding.  These NLP tools are rightly focused on literature and common media 
products.  Applying NLP to songs faces several unique issues, however.  First, words are often used 
as another musical instrument.  Repeated words, in repeated lines of a chorus help keep the beat.  
But a chorus makes a mockery of n-gram analysis. Second, words are often chosen more for their 
sound than their meaning. 

‘Don’t fix your lips like collagen. 
And say something when you goin’ end up apologin [sic]” 

Kanye West’s ‘Can’t Tell Me Nothin’[sic]” -2016 
The man’s a genius, but how does a machine identify that sentiment?  This capstone project attempted 
to sharpen the NLP tools by using a large corpus of songs to create domain-specific NLP sentiment 
analysis variants, among other things. 

1.3 Much of this is artificial, of course.  The music industry has no limit to the people who promote, critique 
or sell music products that can ‘Name that Genre!’ in three notes or less. And an acute manpower 
shortage in this group made the Data Science Journey of Discovery an end in itself.  Several necessary 
steps to lay the foundation for a legitimate data product were skipped to stay aligned with the syllabus 
overall and the rest of the groups.  The data scrapping and much of the code fine tuning required to create 
something sustainable are not here. 

2 HYPOTHESIS and FRAMING 
2.1 Given a song’s lyrics it is possible to identify a genre for that song using machine learning. Hip 

Hop is more distinct and machine learning will have more success classifying Hip Hop songs.   
2.2 This capstone conducted training using a corpus of pre-labeled data with three genres. Rock, 

Pop, and Hip Hop.  We assumed the genre label was correct. 
2.3 There were two major concerns apparent at the start of this effort.  First, song lyrics are not 

Natural Language (or they are hyper-natural depending on your nature), and NLP tools have 
limitations as a result (discussed above).  Second, the corpus spanned decades of music and the 
subjective genre label may well have shifted, creating a moving target [variable].  

2.4 The capstone attempted to mitigate both issues by using the data to create the tools required to 
evaluate the data.  The tools are a derivative of existing NLP tools, created with domain-
specific knowledge, in turn created by the corpus itself.  

 
  



 

3 METHODOLOGY 
 
3.1 Logistics.  The software environment was created and constantly updated using the full spread of 

available options (Anaconda, pip and Homebrew).   A current environment.yml is kept in the ‘cfg’ folder 
of the Git repository (https://github.com/georgetown-analytics/Music-Lyrics).   That repository contains 
the recommended format and various pieces, including ‘notebooks’ and ‘sample’ folders. The ‘sample’ 
folder contains python scripts created first in Sublime Text, which were then tested piecemeal in a 
Jupyter Notebook and then run in their entirety in Terminal.  The ‘notebooks’ folder is a series of Jupyter 
Notebooks outlining the data science journey. As data was cleaned, wrangled and munged it was kept in 
an Amazon Simple Storage Service (S3) ‘bucket’. Several buckets were configured as WORM with 
‘Object Lock’ enabled.  These held the original dataset and specific canonical dataframes created at 
defined checkpoints along the way.   

3.2 Data Ingestion and Wrangling.  The datasets came from Kaggle.  This set off a series of dataset-to-
exploratory-data-analysis (EDA)-to-hypothesis-modification-to-dataset cycles, a necessary artificiality.  
We had turned the first steps on their head as one should start with a hypothesis and then go find, or 
make, or scrape the data.  We thoroughly explored three different sets.    We chose ‘6 Musical Genres’ 
because it had the key features (lyrics and corresponding genre) and the lyrics were not yet pre-
processed.  This enabled us to fully work NLP. 

 
3.3 NLP Pre-Processing. This process is unique to NLP and required some self-education1 2 and Teacher 

Assistance (TA) assistance.3 NLTK, Gensim, and regex tools were used to create initial features (word 
and letter counts for the full set of lyrics) and process the lyrics for more advanced parsing.  Before 
removing highly repetitive / low information words (stopwords) the group decided to look at multiple 
NLP options. The half-pre-processed lyrics through a standard path and the group started to send the 
same data, at the same point in cleaning, through a spaCy set of analysis.4  The standard path included 
genism stopwords and NLTK lemmatization.  This created a reduced set of lyrics with their own 
word/character counts.  Additional feature engineering added a sentiment score and label (positive, 
negative and neutral).  The group also appended a different sentiment analysis feature using the AFINN 
lexicon. While it was clear that spaCy was a powerful and clean way to accomplish most NLP things, the 

 
1 Bengfort, Bilbro, Ojeda “Applied Text Analysis with Python”, O’Reilly Media, Inc. 2018. 
2 Sarker, Bali, Sharma “Practical Machine Learning with Python”, Apress Press, 2018 
3 L Carter, Sansui, Holland, Tanner, Scaramella, Johnson “Article Classification Between Real & Fake News” 
https://github.com/georgetown-analytics/From-Russia-With-Love-fake-news- 
4 spaCy API, Explosion 2016-2021, https://course.spacy.io/en 
 

Song Lyrics from 6 Musical Genres artists-data.csv Artist # Songs # Popularity Link Genre Genres

167499 tracks Lyrics-data.csv Alink Sname Slink Lyric Idiom

Link

Music Dataset: 1950 - 2019 tcc_ceds_music.csv # artist_name track_name release_date genre lyrics

23689 tracks

Link

Song Lyrics album_details.csv # id singer_name name type year

25000 tracks Lyrics.csv # link artist song_name lyrics

Link songs_details.csv # song_id singer_name song_name song_href

Pertinent Data: Artist Song Lyric Genre Year

pop, country, 

blues, rock, jazz

Rock, Pop, 

Sertanejo, Hip 

Hop, Funk 

Carioca

No Genre 

Information

Plus 24 other other classifications ->

https://github.com/georgetown-analytics/Music-Lyrics
https://github.com/georgetown-analytics/From-Russia-With-Love-fake-news-
https://course.spacy.io/en


group failed to find a repeatable way to append the nlp.doc to my growing dataframe.  The group had to 
run spaCy nlp.doc again with each new Jupyter session.  We dropped the spaCy avenue of investigation. 

3.4 EDA and Visual Analysis.  The second time through EDA looked at the earliest features created and 
identified some promising facts (Hip Hop counts and sentiment are different, visually, from the others) 
and some concerning ones (Rock and Pop are similar). There is a disparity in the number of examples of 
each genre in the total data set of 86,290.  Down sampling was required. 

 

 
While doing wordclouds, I found more differences within a sea of very similar words.  

 
Digging deeper in n-grams (CountVectorizer) we found some differences when looking at individual words and 
their frequency.  There was real divergence between genres at the df.head(200) level of detail. 

 
 
However, bigrams and trigrams looked very similar regardless of the genre with many ‘yeah, yeah, yeah’s.   
3.5 Feature Engineering.  Remembering recommendations from Dr. Bengfort and looking at a df with every 

single word and its frequency, we decided to pursue the ideas of (1) domain-specific stopwords list, and 
(2) domain-specific sentiment. It started as another ‘branch’ our notebooks but became a concerted 
coding effort for the better part of four days. To avoid, or at least minimize, leakage, the lists were 
created using 80% of the total dataset with the same distribution of the target feature, genre.   

3.5.1   Stopword lists are small lists for numerous words, with little meaning.  What if they are 



also huge lists of little used words, each lacking meaningful statistical relevance? If one gets rid of 
20,000 words used only 5 times each in a corpus, they’ve gotten rid of 100,000 points in a tf-idf 
sparce matrix.  Stopword lists are often applied without much thought or concern, despite having a 
dramatic impact on the corpus left behind and any follow-on feature engineering. Looking further, 
“We hence recommend better documentation, dynamically adapting stop lists during preprocessing, 
as well as creating tools for stop lists quality control and automatically generating stop lists.”5   The 
process developed leveraged sklearn CountVectorizer and allowed the group to breakout words for 
various genres with a metric for how common they were (frequency).  The first step in the process 
was to capture all words in all the lyrics. This was over 135,000 (from 30.6M total). Following a 
recommendation from Dr. Bengfort, a stop words list was made which constituted the least used 
words whose frequency sum added up to 5% of the total – about 96,000 different words, each used 
less than 36 times. The belief was that removing these words will reduce noise for clustering types 
of models.   

3.5.2 The next step resulted in total word lists by genre.  We pd.merged those lists pairwise (Hip Hop 
and Rock, etc.).  

 
By using indicator=True & groupby, we broke out lists of words which were in one list, but not the 
other (Hip Hop through Rock, etc.). We then pd.merged the resulting dataframes by genre (Hip Hop 
through Rock with Hip Hop through Pop) and selected the words that were in both dataframes.  With 
that, we had a list of words truly unique to each genre.  The (80%) Pop/Rock/HipHop lexicon has 
66,691 words. 

 
3.5.3 We used the domain-specific stopwords list amended to NLTK stopwords list to make a third set of 

lyrics.  Sml_lyrics is ~ 600,000 less words than med_lyrics, which is ~21 million less than 
full_lyrics.  We re-ran the feature engineering steps on the sml_lyrics (counts, sentiment, affinity) 
and had another set of features to consider.  Next we modified the NLTK stopwords process to 
create a count in each instance of how many of which genre_specific words were in each med_lyric 
and sml_lyric.  Again, more features to consider.  

 
5 Notham, Qin, Yurchak “Stop Words Lists in Free Open-source Software Packages” Proceedings of Workshop for NLP 
Open Source Software, pages 7-12 



3.6 EDA and Visual Analysis.  From the original data set 
with four features, we had grown to 29 features across three 
main sets.  Features came from either the full_lyrics, the 
med_lyrics or the sml_lyrics. Getting from full to med went 
through genism STOPWORDS.  From med to sml went 
through NLTK’s stop_words and the genre stop words list 
we’d built.  For full, med and sml there are word and character 
counts.  For med and sml there are affinity and sentiment 
scores / labels, and then the count, by genre, of genre-specific 
words. Forty eight percent of the entire dataset set had at least 
one genre ‘hit’.  And 89% of those were exclusively in one 
genre.   
We knew we had collinearity when we plotted features from 

across each of the three pillars (full, med, sml).  But apparently, we had it within the pillars as well.  We 
attempted to bring out the importance of the genre_count by scaling (MinMaxScaler) those features - to 
no obvious effect.  RadViz plots below are broken out by med & sml features, and then those same 
features scaled.   
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3.7 Feature Engineering. An early run of various ML pipelines showed that the algorithms were often 

confusing Rock and Hip Hop.  This made it obvious the genre_counts weren’t making a difference even 
though 70% of Hip Hop instances had a unique Hip Hop word.    Also, clustering visualizations showed 
that scaling genre_counts didn’t make the difference obvious either (all other things being equal).    
edecided to create a new feature, a simpler binary feature which indicated the presence of one or more 
domain specific words. [size]_[genre]_bool    We had 35 features. 

 
 
3.8 Visual Steering and Feature Selection. “Most of these techniques are univariate, meaning that they 

evaluate each predictor in isolation. In this case, the existence of correlated predictors makes it possible 
to select important, but redundant, predictors. The obvious consequences of this issue are that too many 

predictors are chosen and, as a result, 
problems arise.”6 An example of the problem, 
to the left.  In order to move through the 
visualizers faster, we created a numeric-only 
dataset and toured the various tools to conduct 
feature selection.    As this was a numeric 
input with a classification output, attempting 
feature selection one at a time fit within an 
Analysis of Variance (ANOVA) worked best.  
Sklearn, f_classif() does not have a visualizer. 
Run multiple times selecting an expanding 
group of features (k=3,5,7,10, 12, 15, 20, 25) 

across three different models., documenting F1 score and selector.support_ each time created our own 

 
6 Kuhn, Johnson “Applied Predictive Modeling: 2nd ed, 2018. Springer Publishing 



visualizer.  ANOVA recommended 
various word counts and the 
[size]_[genre]_bool features.  The ‘knee 
in the curve’ for best F1 was ~ 10 
features.   ANOVA did not select affin 
or sentiment.    Wetried Rank1D and 
Rank2D next.  These are best with 
regressions, and not classifiers, but they 
are easy and still useful for getting a 
different look at the same data.  
Rank1D selected affin and sentiment 
and didn’t select [size]_[genre]_bool.  
Rank2D weakly highlighted the power 
of cross-referencing word counts, 
[size]_[genre]_bool and sentiment 
and/or affin. We next looked at 
Recursive Feature Elimination and 
Cross Validation (RFECV) to see if I 
could break the tie.  Again, ten features 
were about the right number.  It was 
harder to prioritize features using 
RFECV. It would just report the ‘top 
18’.  However word counts, 
sentiment/affin and [size]_[genre]_bool 
were in the top 18.  EDA showed why 
some things were impactful.  Hip Hop 
was just much more verbose.  
Sentiment was not as stark, but Hip 

Hop sentiment was negative 42% of the time, 
whereas Pop was negative 24%.   



 
Perhaps because of our 
own biases, we explored 
the recommended 
features from ANOVA 
first. The RadViz was 
different, exciting. The 
breakouts between Pop, 
Rock and Hip Hop were 
right there, pointed at the 
target.  There was some 
red everywhere, but that 
could have just been a 
visualization issue.  Red 
shows up more when 
Alpha=.03.   
But, even if that were true 
I knew the lyrics did not 
conform to such tight 
buckets.  For every 

Snoop Dog making classic Hip Hop, there is a 
Linkin Park performing at the intersection of 
Rock and Hip Hop.  And don’t get us started 
about Old Town Road. This was too artificial.  
We put in sentiment and affin next. And then we 
tried all of the features, in all of the ways.  
Sentiment and affin ‘mattered’.  But they also 
muddied the picture.  Without them, the picture 
was too clean unless redundant word / character 
counts were added. 
Next we tried just affin, and then just sentiment.  
We chose sml vice med as the range and 
standard deviations were broader.  These 
visualizations seemed the best fit (most defined 

groups) yet. 
 

RFECV broke out affin above sentiment.  In an 
unscientific look at RadViz, the 
sml_content_affin groups look more defined.  
And because sent_label encodes the sentiment 
information in a more definitive way (0.0001 and 
a 0.98 sent_scores are both ‘positive’) we felt 
there was a chance that clustering algorithms 
would pick up the Hip Hop / Pop sentiment 
divide better.  We next picked the full 
word/character counts as the differences between 
genres was larger when compared to med and 
sml.  Finally, the three med_[genre]_bool 
features rounded out the numeric feature 

selection. 
  



 
3.9 Modeling. There were four types of features selected: objects (sml_vector); categorical 

(sml_sent_label (positive, negative, neutral); numbers with outliers (word and character counts); 
and numbers without outliers (genre Boolean feature and sml_content_affin).  Each type needed to 
be scaled or otherwise prepared for modeling in different ways.  A column transformer prepared 
the data which was then fed into a series of models for preliminary evaluation.  Code block below. 

 

 

 

 

 

 
 

The first look at 15 different models is below.  The green highlights performance in the top 20%, red 
shows poor performance.  As expected, the models were more successful identifying the genre using 
lyrics when the songs were from the Hip Hop genre averaging an F1 score of .851. 
 

 
 

  



3.10 Hyperparameter Tuning. The group selected four models to tune. Two were chosen based 
exclusively preliminary performance (ExtraTreesClassifier, LogisticRegressionCV).  Two were 
chosen simply to tune different families of models (MultinomialNB, MLPClassifier). 

3.10.1 ExtraTreesClassifier. This ensemble method performed well from the start. The out-of-the-
box parameter settings left little to be improved upon.  Only adding additional estimators and 
constraining the max depth forced a slight improvement. The table below shows which 
parameters were explored, which were default (in red) and which were selected as most 
effective (highlighted in yellow). 

 

 
The confusion matrix below shows the precision recall, F1 and test set for each of the genres using 
ExtraTreesClassifier and optimum settings.  The print statement below the confusion matrix highlights 
the difference between training and test data and the time required to fit the model. 

 

 
 
Hyperparameter tuning did not accomplish much with this classifier. 

 
 
  



3.10.2 MultinomialNBClassifier. This probabilistic classifier had few parameters to tune, the 
parameters were set correctly from the beginning, and was very, very fast. 

 
 

 
 

 

 



3.10.3 LogisticRegressionCV.  The parameters for this model could not be improved upon.   
 

 
 

 

 
 

 
 
  



3.10.4 MLPClassifier.  This multi-layer perceptron classifier had myriad tunable parameters and 
was fascinating to work with.   

 
 

 

 

 
  



4 CONCLUSION. 
The data science pipeline and this analysis supports the hypothesis that a song’s genre can be identified 
using the lyrics and machine learning algorithms.  Further, in that same pipeline, lyrics of Hip Hop songs 
make them more identifiable.  Creation of a genre-specific stopwords list reduced the overall size of the 
corpus required to be put into machine learning algorithms improving processing time, slightly.  A genre-
specific lexicon of words was an important feature used by the algorithms to classify the labeled training 
set.  Even with these additions to Python’s NLP tools, classifying Pop music, as compared to Hip Hop or 
Rock, was difficult and severely degraded the performance overall.   

  
 

 
 

5 NEXT STEPS. 
Performing this type of analysis more accurately, faster, across more genres in a repeatable way would 
require many improvements to the process used here.  More data, with more classes would add relevance 
to this set of genres.  Expanding beyond lyrics to sound would bring a dramatic improvement in 
performance as the combination of lyrics and sound is at the key to what a musical genre uses to describe 
itself.  A function to identify choruses (repeated lines of lyrics) would allow running sentiment/ 
objectivity lexicons, term frequency (inverse document frequency) or n-gram analysis on the ‘meat’ of the 
lyrics, the verse.  That would perhaps improve the performance of those NLP tools. A model based on a 
Feature Union would enable weighting the various intertwined pipelines differently.  This would add a 
new, perhaps critical, dimension to hyperparameter tuning.  
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