
Disclaimer: The insights and analysis expressed in this paper are those of the authors and do not
necessarily reflect the views, official policy, or position of Georgetown University and its
stakeholders.

Predicting Music Genre

with Lyrics

and Machine Learning Algorithms
Github: https://github.com/georgetown-analytics/Music-Lyrics

Georgetown University School of Continuing Studies

Cohort 23 — Capstone Project

Author: Tony Wright
Project Coordinator: Tony Wright

Capstone Advisor: Karen Belita

June 26, 2021 — Capstone Project in Partial Fulfilment of the Requirements for the Certificate in
Data Science.

https://github.com/georgetown-analytics/Music-Lyrics

TABLE OF CONTENTS

1 ABSTRACT ... 3

2 HYPOTHESIS AND FRAMING ... 3

3 METHODOLOGY... 4

4 CONCLUSION. .. 16

5 NEXT STEPS. .. 16

1 ABSTRACT
1.1 Using algorithms to identify a product, a corresponding consumer, and uniting the two is the

dominant use of advanced algorithms today (metric: ‘money generated from the activity’).
Identifying attributes of a new song is a necessary first step in finding a consumer for that song. The
most fundamental of song attributes is genre. Fortunately, consumers readily identify themselves
publicly by their favorite genres making it a powerful Foreign Key to complete the sale. This
capstone used machine learning and the song lyrics to identify a song’s musical genre.

1.2 Data Science has several tools to convert language into consumable data for various algorithms.
Natural Language Processing (NLP) adds several unique steps to the front of the data science
process. NLP strips away the pieces that help language make sense for people but add nothing to a
machine’s understanding. These NLP tools are rightly focused on literature and common media
products. Applying NLP to songs faces several unique issues, however. First, words are often used
as another musical instrument. Repeated words, in repeated lines of a chorus help keep the beat.
But a chorus makes a mockery of n-gram analysis. Second, words are often chosen more for their
sound than their meaning.

‘Don’t fix your lips like collagen.
And say something when you goin’ end up apologin [sic]”

Kanye West’s ‘Can’t Tell Me Nothin’[sic]” -2016
The man’s a genius, but how does a machine identify that sentiment? This capstone project attempted
to sharpen the NLP tools by using a large corpus of songs to create domain-specific NLP sentiment
analysis variants, among other things.

1.3 Much of this is artificial, of course. The music industry has no limit to the people who promote, critique
or sell music products that can ‘Name that Genre!’ in three notes or less. And an acute manpower
shortage in this group made the Data Science Journey of Discovery an end in itself. Several necessary
steps to lay the foundation for a legitimate data product were skipped to stay aligned with the syllabus
overall and the rest of the groups. The data scrapping and much of the code fine tuning required to create
something sustainable are not here.

2 HYPOTHESIS and FRAMING
2.1 Given a song’s lyrics it is possible to identify a genre for that song using machine learning. Hip

Hop is more distinct and machine learning will have more success classifying Hip Hop songs.
2.2 This capstone conducted training using a corpus of pre-labeled data with three genres. Rock,

Pop, and Hip Hop. We assumed the genre label was correct.
2.3 There were two major concerns apparent at the start of this effort. First, song lyrics are not

Natural Language (or they are hyper-natural depending on your nature), and NLP tools have
limitations as a result (discussed above). Second, the corpus spanned decades of music and the
subjective genre label may well have shifted, creating a moving target [variable].

2.4 The capstone attempted to mitigate both issues by using the data to create the tools required to
evaluate the data. The tools are a derivative of existing NLP tools, created with domain-
specific knowledge, in turn created by the corpus itself.

3 METHODOLOGY

3.1 Logistics. The software environment was created and constantly updated using the full spread of

available options (Anaconda, pip and Homebrew). A current environment.yml is kept in the ‘cfg’ folder
of the Git repository (https://github.com/georgetown-analytics/Music-Lyrics). That repository contains
the recommended format and various pieces, including ‘notebooks’ and ‘sample’ folders. The ‘sample’
folder contains python scripts created first in Sublime Text, which were then tested piecemeal in a
Jupyter Notebook and then run in their entirety in Terminal. The ‘notebooks’ folder is a series of Jupyter
Notebooks outlining the data science journey. As data was cleaned, wrangled and munged it was kept in
an Amazon Simple Storage Service (S3) ‘bucket’. Several buckets were configured as WORM with
‘Object Lock’ enabled. These held the original dataset and specific canonical dataframes created at
defined checkpoints along the way.

3.2 Data Ingestion and Wrangling. The datasets came from Kaggle. This set off a series of dataset-to-
exploratory-data-analysis (EDA)-to-hypothesis-modification-to-dataset cycles, a necessary artificiality.
We had turned the first steps on their head as one should start with a hypothesis and then go find, or
make, or scrape the data. We thoroughly explored three different sets. We chose ‘6 Musical Genres’
because it had the key features (lyrics and corresponding genre) and the lyrics were not yet pre-
processed. This enabled us to fully work NLP.

3.3 NLP Pre-Processing. This process is unique to NLP and required some self-education1 2 and Teacher

Assistance (TA) assistance.3 NLTK, Gensim, and regex tools were used to create initial features (word
and letter counts for the full set of lyrics) and process the lyrics for more advanced parsing. Before
removing highly repetitive / low information words (stopwords) the group decided to look at multiple
NLP options. The half-pre-processed lyrics through a standard path and the group started to send the
same data, at the same point in cleaning, through a spaCy set of analysis.4 The standard path included
genism stopwords and NLTK lemmatization. This created a reduced set of lyrics with their own
word/character counts. Additional feature engineering added a sentiment score and label (positive,
negative and neutral). The group also appended a different sentiment analysis feature using the AFINN
lexicon. While it was clear that spaCy was a powerful and clean way to accomplish most NLP things, the

1 Bengfort, Bilbro, Ojeda “Applied Text Analysis with Python”, O’Reilly Media, Inc. 2018.
2 Sarker, Bali, Sharma “Practical Machine Learning with Python”, Apress Press, 2018
3 L Carter, Sansui, Holland, Tanner, Scaramella, Johnson “Article Classification Between Real & Fake News”
https://github.com/georgetown-analytics/From-Russia-With-Love-fake-news-
4 spaCy API, Explosion 2016-2021, https://course.spacy.io/en

Song Lyrics from 6 Musical Genres artists-data.csv Artist # Songs # Popularity Link Genre Genres

167499 tracks Lyrics-data.csv Alink Sname Slink Lyric Idiom

Link

Music Dataset: 1950 - 2019 tcc_ceds_music.csv # artist_name track_name release_date genre lyrics

23689 tracks

Link

Song Lyrics album_details.csv # id singer_name name type year

25000 tracks Lyrics.csv # link artist song_name lyrics

Link songs_details.csv # song_id singer_name song_name song_href

Pertinent Data: Artist Song Lyric Genre Year

pop, country,

blues, rock, jazz

Rock, Pop,

Sertanejo, Hip

Hop, Funk

Carioca

No Genre

Information

Plus 24 other other classifications ->

https://github.com/georgetown-analytics/Music-Lyrics
https://github.com/georgetown-analytics/From-Russia-With-Love-fake-news-
https://course.spacy.io/en

group failed to find a repeatable way to append the nlp.doc to my growing dataframe. The group had to
run spaCy nlp.doc again with each new Jupyter session. We dropped the spaCy avenue of investigation.

3.4 EDA and Visual Analysis. The second time through EDA looked at the earliest features created and
identified some promising facts (Hip Hop counts and sentiment are different, visually, from the others)
and some concerning ones (Rock and Pop are similar). There is a disparity in the number of examples of
each genre in the total data set of 86,290. Down sampling was required.

While doing wordclouds, I found more differences within a sea of very similar words.

Digging deeper in n-grams (CountVectorizer) we found some differences when looking at individual words and
their frequency. There was real divergence between genres at the df.head(200) level of detail.

However, bigrams and trigrams looked very similar regardless of the genre with many ‘yeah, yeah, yeah’s.
3.5 Feature Engineering. Remembering recommendations from Dr. Bengfort and looking at a df with every

single word and its frequency, we decided to pursue the ideas of (1) domain-specific stopwords list, and
(2) domain-specific sentiment. It started as another ‘branch’ our notebooks but became a concerted
coding effort for the better part of four days. To avoid, or at least minimize, leakage, the lists were
created using 80% of the total dataset with the same distribution of the target feature, genre.

3.5.1 Stopword lists are small lists for numerous words, with little meaning. What if they are

also huge lists of little used words, each lacking meaningful statistical relevance? If one gets rid of
20,000 words used only 5 times each in a corpus, they’ve gotten rid of 100,000 points in a tf-idf
sparce matrix. Stopword lists are often applied without much thought or concern, despite having a
dramatic impact on the corpus left behind and any follow-on feature engineering. Looking further,
“We hence recommend better documentation, dynamically adapting stop lists during preprocessing,
as well as creating tools for stop lists quality control and automatically generating stop lists.”5 The
process developed leveraged sklearn CountVectorizer and allowed the group to breakout words for
various genres with a metric for how common they were (frequency). The first step in the process
was to capture all words in all the lyrics. This was over 135,000 (from 30.6M total). Following a
recommendation from Dr. Bengfort, a stop words list was made which constituted the least used
words whose frequency sum added up to 5% of the total – about 96,000 different words, each used
less than 36 times. The belief was that removing these words will reduce noise for clustering types
of models.

3.5.2 The next step resulted in total word lists by genre. We pd.merged those lists pairwise (Hip Hop
and Rock, etc.).

By using indicator=True & groupby, we broke out lists of words which were in one list, but not the
other (Hip Hop through Rock, etc.). We then pd.merged the resulting dataframes by genre (Hip Hop
through Rock with Hip Hop through Pop) and selected the words that were in both dataframes. With
that, we had a list of words truly unique to each genre. The (80%) Pop/Rock/HipHop lexicon has
66,691 words.

3.5.3 We used the domain-specific stopwords list amended to NLTK stopwords list to make a third set of

lyrics. Sml_lyrics is ~ 600,000 less words than med_lyrics, which is ~21 million less than
full_lyrics. We re-ran the feature engineering steps on the sml_lyrics (counts, sentiment, affinity)
and had another set of features to consider. Next we modified the NLTK stopwords process to
create a count in each instance of how many of which genre_specific words were in each med_lyric
and sml_lyric. Again, more features to consider.

5 Notham, Qin, Yurchak “Stop Words Lists in Free Open-source Software Packages” Proceedings of Workshop for NLP
Open Source Software, pages 7-12

3.6 EDA and Visual Analysis. From the original data set
with four features, we had grown to 29 features across three
main sets. Features came from either the full_lyrics, the
med_lyrics or the sml_lyrics. Getting from full to med went
through genism STOPWORDS. From med to sml went
through NLTK’s stop_words and the genre stop words list
we’d built. For full, med and sml there are word and character
counts. For med and sml there are affinity and sentiment
scores / labels, and then the count, by genre, of genre-specific
words. Forty eight percent of the entire dataset set had at least
one genre ‘hit’. And 89% of those were exclusively in one
genre.
We knew we had collinearity when we plotted features from

across each of the three pillars (full, med, sml). But apparently, we had it within the pillars as well. We
attempted to bring out the importance of the genre_count by scaling (MinMaxScaler) those features - to
no obvious effect. RadViz plots below are broken out by med & sml features, and then those same
features scaled.

338

3.7 Feature Engineering. An early run of various ML pipelines showed that the algorithms were often

confusing Rock and Hip Hop. This made it obvious the genre_counts weren’t making a difference even
though 70% of Hip Hop instances had a unique Hip Hop word. Also, clustering visualizations showed
that scaling genre_counts didn’t make the difference obvious either (all other things being equal).
edecided to create a new feature, a simpler binary feature which indicated the presence of one or more
domain specific words. [size]_[genre]_bool We had 35 features.

3.8 Visual Steering and Feature Selection. “Most of these techniques are univariate, meaning that they

evaluate each predictor in isolation. In this case, the existence of correlated predictors makes it possible
to select important, but redundant, predictors. The obvious consequences of this issue are that too many

predictors are chosen and, as a result,
problems arise.”6 An example of the problem,
to the left. In order to move through the
visualizers faster, we created a numeric-only
dataset and toured the various tools to conduct
feature selection. As this was a numeric
input with a classification output, attempting
feature selection one at a time fit within an
Analysis of Variance (ANOVA) worked best.
Sklearn, f_classif() does not have a visualizer.
Run multiple times selecting an expanding
group of features (k=3,5,7,10, 12, 15, 20, 25)

across three different models., documenting F1 score and selector.support_ each time created our own

6 Kuhn, Johnson “Applied Predictive Modeling: 2nd ed, 2018. Springer Publishing

visualizer. ANOVA recommended
various word counts and the
[size]_[genre]_bool features. The ‘knee
in the curve’ for best F1 was ~ 10
features. ANOVA did not select affin
or sentiment. Wetried Rank1D and
Rank2D next. These are best with
regressions, and not classifiers, but they
are easy and still useful for getting a
different look at the same data.
Rank1D selected affin and sentiment
and didn’t select [size]_[genre]_bool.
Rank2D weakly highlighted the power
of cross-referencing word counts,
[size]_[genre]_bool and sentiment
and/or affin. We next looked at
Recursive Feature Elimination and
Cross Validation (RFECV) to see if I
could break the tie. Again, ten features
were about the right number. It was
harder to prioritize features using
RFECV. It would just report the ‘top
18’. However word counts,
sentiment/affin and [size]_[genre]_bool
were in the top 18. EDA showed why
some things were impactful. Hip Hop
was just much more verbose.
Sentiment was not as stark, but Hip

Hop sentiment was negative 42% of the time,
whereas Pop was negative 24%.

Perhaps because of our
own biases, we explored
the recommended
features from ANOVA
first. The RadViz was
different, exciting. The
breakouts between Pop,
Rock and Hip Hop were
right there, pointed at the
target. There was some
red everywhere, but that
could have just been a
visualization issue. Red
shows up more when
Alpha=.03.
But, even if that were true
I knew the lyrics did not
conform to such tight
buckets. For every

Snoop Dog making classic Hip Hop, there is a
Linkin Park performing at the intersection of
Rock and Hip Hop. And don’t get us started
about Old Town Road. This was too artificial.
We put in sentiment and affin next. And then we
tried all of the features, in all of the ways.
Sentiment and affin ‘mattered’. But they also
muddied the picture. Without them, the picture
was too clean unless redundant word / character
counts were added.
Next we tried just affin, and then just sentiment.
We chose sml vice med as the range and
standard deviations were broader. These
visualizations seemed the best fit (most defined

groups) yet.

RFECV broke out affin above sentiment. In an
unscientific look at RadViz, the
sml_content_affin groups look more defined.
And because sent_label encodes the sentiment
information in a more definitive way (0.0001 and
a 0.98 sent_scores are both ‘positive’) we felt
there was a chance that clustering algorithms
would pick up the Hip Hop / Pop sentiment
divide better. We next picked the full
word/character counts as the differences between
genres was larger when compared to med and
sml. Finally, the three med_[genre]_bool
features rounded out the numeric feature

selection.

3.9 Modeling. There were four types of features selected: objects (sml_vector); categorical

(sml_sent_label (positive, negative, neutral); numbers with outliers (word and character counts);
and numbers without outliers (genre Boolean feature and sml_content_affin). Each type needed to
be scaled or otherwise prepared for modeling in different ways. A column transformer prepared
the data which was then fed into a series of models for preliminary evaluation. Code block below.

The first look at 15 different models is below. The green highlights performance in the top 20%, red
shows poor performance. As expected, the models were more successful identifying the genre using
lyrics when the songs were from the Hip Hop genre averaging an F1 score of .851.

3.10 Hyperparameter Tuning. The group selected four models to tune. Two were chosen based
exclusively preliminary performance (ExtraTreesClassifier, LogisticRegressionCV). Two were
chosen simply to tune different families of models (MultinomialNB, MLPClassifier).

3.10.1 ExtraTreesClassifier. This ensemble method performed well from the start. The out-of-the-
box parameter settings left little to be improved upon. Only adding additional estimators and
constraining the max depth forced a slight improvement. The table below shows which
parameters were explored, which were default (in red) and which were selected as most
effective (highlighted in yellow).

The confusion matrix below shows the precision recall, F1 and test set for each of the genres using
ExtraTreesClassifier and optimum settings. The print statement below the confusion matrix highlights
the difference between training and test data and the time required to fit the model.

Hyperparameter tuning did not accomplish much with this classifier.

3.10.2 MultinomialNBClassifier. This probabilistic classifier had few parameters to tune, the
parameters were set correctly from the beginning, and was very, very fast.

3.10.3 LogisticRegressionCV. The parameters for this model could not be improved upon.

3.10.4 MLPClassifier. This multi-layer perceptron classifier had myriad tunable parameters and
was fascinating to work with.

4 CONCLUSION.
The data science pipeline and this analysis supports the hypothesis that a song’s genre can be identified
using the lyrics and machine learning algorithms. Further, in that same pipeline, lyrics of Hip Hop songs
make them more identifiable. Creation of a genre-specific stopwords list reduced the overall size of the
corpus required to be put into machine learning algorithms improving processing time, slightly. A genre-
specific lexicon of words was an important feature used by the algorithms to classify the labeled training
set. Even with these additions to Python’s NLP tools, classifying Pop music, as compared to Hip Hop or
Rock, was difficult and severely degraded the performance overall.

5 NEXT STEPS.
Performing this type of analysis more accurately, faster, across more genres in a repeatable way would
require many improvements to the process used here. More data, with more classes would add relevance
to this set of genres. Expanding beyond lyrics to sound would bring a dramatic improvement in
performance as the combination of lyrics and sound is at the key to what a musical genre uses to describe
itself. A function to identify choruses (repeated lines of lyrics) would allow running sentiment/
objectivity lexicons, term frequency (inverse document frequency) or n-gram analysis on the ‘meat’ of the
lyrics, the verse. That would perhaps improve the performance of those NLP tools. A model based on a
Feature Union would enable weighting the various intertwined pipelines differently. This would add a
new, perhaps critical, dimension to hyperparameter tuning.

	1 ABSTRACT
	1.1 Using algorithms to identify a product, a corresponding consumer, and uniting the two is the dominant use of advanced algorithms today (metric: ‘money generated from the activity’). Identifying attributes of a new song is a necessary first step in...
	1.2 Data Science has several tools to convert language into consumable data for various algorithms. Natural Language Processing (NLP) adds several unique steps to the front of the data science process. NLP strips away the pieces that help language ma...
	1.3 Much of this is artificial, of course. The music industry has no limit to the people who promote, critique or sell music products that can ‘Name that Genre!’ in three notes or less. And an acute manpower shortage in this group made the Data Scien...

	2 HYPOTHESIS and FRAMING
	2.1 Given a song’s lyrics it is possible to identify a genre for that song using machine learning. Hip Hop is more distinct and machine learning will have more success classifying Hip Hop songs.
	2.2 This capstone conducted training using a corpus of pre-labeled data with three genres. Rock, Pop, and Hip Hop. We assumed the genre label was correct.
	2.3 There were two major concerns apparent at the start of this effort. First, song lyrics are not Natural Language (or they are hyper-natural depending on your nature), and NLP tools have limitations as a result (discussed above). Second, the corpu...
	2.4 The capstone attempted to mitigate both issues by using the data to create the tools required to evaluate the data. The tools are a derivative of existing NLP tools, created with domain-specific knowledge, in turn created by the corpus itself.

	3 METHODOLOGY
	3.1 Logistics. The software environment was created and constantly updated using the full spread of available options (Anaconda, pip and Homebrew). A current environment.yml is kept in the ‘cfg’ folder of the Git repository (https://github.com/geor...
	3.2 Data Ingestion and Wrangling. The datasets came from Kaggle. This set off a series of dataset-to-exploratory-data-analysis (EDA)-to-hypothesis-modification-to-dataset cycles, a necessary artificiality. We had turned the first steps on their hea...
	3.3 NLP Pre-Processing. This process is unique to NLP and required some self-education and Teacher Assistance (TA) assistance. NLTK, Gensim, and regex tools were used to create initial features (word and letter counts for the full set of lyrics) a...
	3.4 EDA and Visual Analysis. The second time through EDA looked at the earliest features created and identified some promising facts (Hip Hop counts and sentiment are different, visually, from the others) and some concerning ones (Rock and Pop are si...
	3.5 Feature Engineering. Remembering recommendations from Dr. Bengfort and looking at a df with every single word and its frequency, we decided to pursue the ideas of (1) domain-specific stopwords list, and (2) domain-specific sentiment. It started a...
	3.5.1 Stopword lists are small lists for numerous words, with little meaning. What if they are also huge lists of little used words, each lacking meaningful statistical relevance? If one gets rid of 20,000 words used only 5 times each in a corpus, ...
	3.5.2 The next step resulted in total word lists by genre. We pd.merged those lists pairwise (Hip Hop and Rock, etc.).
	3.5.3 We used the domain-specific stopwords list amended to NLTK stopwords list to make a third set of lyrics. Sml_lyrics is ~ 600,000 less words than med_lyrics, which is ~21 million less than full_lyrics. We re-ran the feature engineering steps on...

	3.6 EDA and Visual Analysis. From the original data set with four features, we had grown to 29 features across three main sets. Features came from either the full_lyrics, the med_lyrics or the sml_lyrics. Getting from full to med went through genism...
	3.7 Feature Engineering. An early run of various ML pipelines showed that the algorithms were often confusing Rock and Hip Hop. This made it obvious the genre_counts weren’t making a difference even though 70% of Hip Hop instances had a unique Hip Ho...
	3.8 Visual Steering and Feature Selection. “Most of these techniques are univariate, meaning that they evaluate each predictor in isolation. In this case, the existence of correlated predictors makes it possible to select important, but redundant, pre...
	3.9 Modeling. There were four types of features selected: objects (sml_vector); categorical (sml_sent_label (positive, negative, neutral); numbers with outliers (word and character counts); and numbers without outliers (genre Boolean feature and sml_c...
	3.10 Hyperparameter Tuning. The group selected four models to tune. Two were chosen based exclusively preliminary performance (ExtraTreesClassifier, LogisticRegressionCV). Two were chosen simply to tune different families of models (MultinomialNB, ML...
	3.10.1 ExtraTreesClassifier. This ensemble method performed well from the start. The out-of-the-box parameter settings left little to be improved upon. Only adding additional estimators and constraining the max depth forced a slight improvement. The ...
	3.10.2 MultinomialNBClassifier. This probabilistic classifier had few parameters to tune, the parameters were set correctly from the beginning, and was very, very fast.
	3.10.3 LogisticRegressionCV. The parameters for this model could not be improved upon.
	3.10.4 MLPClassifier. This multi-layer perceptron classifier had myriad tunable parameters and was fascinating to work with.

	4 CONCLUSION.
	5 NEXT STEPS.

